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Abstract—Applications intended to work on multiple devices
or those that store large enough amounts of data must save
their data to a backend server rather than locally. Privacy of
users is typically only protected on the wire with SSL or on the
backend with an encrypted database. This leaves user data and
communications open to malicious server operators or attack-
ers. Application developers may easily fall into cryptographic
mistakes if they attempt to build on primitives themselves.

Crypton uses end-to-end encryption, provides application
developers with high-level APIs for user accounts, robust data
storage, and sharing information between users. We detail the
framework’s cryptographic structure and its implementation
architecture.

Project homepage: https://crypton.io

I. INTRODUCTION

Users’ concern for the privacy of their data has become
widespread after numerous data leaks and revelations of
widespread government spying [1]. Applications built upon
zero-knowledge principals have a competitive advantage in
an emulous market. Additionally, as a service operator, it is
inherently responsible to protect users’ data from intrusions
by yourself or an adversary.

Crypton is a unique way to build applications, primarily
because it makes it simple for developers to store data with
a server in such a way that the server doesn’t know what
that data is. Additionally, all Crypton-based applications are
built solely on the client, and the server acts only as a smart
pipe to the database to store and retrieve data for authenticated
users. A side effect of this architecture is that working with the
framework is not dissimilar to using a ”backend as a service”.

A. Motivation

Moving forward from the success of SpiderOak’s desktop
backup client, the logical progression is to use its Zero-
Knowledge concepts in new ways - specifically in commu-
nications applications popular on mobile devices and desktop
computers. Internet users today are tracked in unprecedented
ways by the advertising juggernaut that exists on the web
as well as the constant, blanket surveillance employed by
many governments. Email has always been about as private
as sending a post card via the mail service. While some
headway has been made in making SSL/TLS the standard
way of protecting SMTP, there are glaring gaps. With this
in mind, SSL is not ever-present on all servers our browsers
connect to, and even if it was, there are massive problems with
SSL and the Certificate Authority system as a whole. A few

of these issues are Certificate Authorities being tricked into
or via intrusion issuing ”valid” certificates that allow a man-
in-the-middle attack to be almost trivial to pull off, as well
as massive zero-day bugs in popular SSL encryption libraries
such as OpenSSL.

The best defense includes the concept of ”defense-in-depth”
[2]. One technique is to use end-to-end encryption as well
as an encrypted network channel to move private data back
and forth to servers and between users. Making this easy for
everyday developers who are not security experts is paramount
to its proliferation. This brings us to the User Experience (UX)
of cryptography in the realm of both developers and end users
of Crypton-based applications.

Crypton is primarily an exercise in improving the UX
of cryptographic software both from the software engineer’s
perspective and the end users who use said software. Start-
ing with the framework’s clients, we employ idiomatic data
structures and APIs as an improvement in the UX of building
more private and secure applications. The reference client
has been written in JavaScript, though there will be clients
ported to other platforms with the similar syntactic sugar.
The Crypton backend tool set is well known and loved by
developers: node.js, Redis and PostgreSQL. The APIs that
Crypton provides are elegant and require no special knowledge
of cryptographic algorithms, methods, or mathematics. It is
designed to be elegant, requiring, for instance, a username,
passphrase, and callback function in order to create an account
and generate the key ring. Below the surface, all cryptographic
operations are hidden.

B. Zero Knowledge

We define Zero Knowledge as a server’s inability to ac-
cess plaintext data while maintaining its duties to store and
secure that data. Crypton does not employ a traditional zero-
knowledge proof other than its use of the SRP [3] protocol
for user authentication.

C. Open Source

A primary impetus behind turning this cryptosystem into a
framework for application developers is that a number of eyes
on one project will find mistakes faster than the same amount
of eyes on many projects. Therefore, making the codebase,
development process, technical specification, and issue tracker
open source is a paramount motivation.



D. Related Work

1) SJCL: SJCL is a JavaScript library that implements a
set of cryptographic primitives [4]. It is used in Crypton until
a native API is exposed to JavaScript, such as the Web Crypto
API, and has found sufficient footing in browsers. While
SJCL was chosen over several other similar libraries, such as
CryptoJS [5], for speed and feature concerns, it is still slower
than a native option would allow. Additionally, key material
is hard to guard from exploits such as XSS in an interpreted
environment. It has however been invaluable in reaching a
working system quickly.

2) Mylar: Mylar [6] is a project with aspirations similar
to Crypton - encrypting and decrypting users’ data in an end-
to-end and idiomatic context. However, it also attempts [7] to
solve extraneous problems such as server-side keyword search
over encrypted documents. We have chosen to keep Crypton
as simple as possible and allow developers to add functionality
like this by use of Crypton’s client-side Container structures.

Mylar is intended to be used in the browser as a traditional
web application, employing a browser extension to verify
dynamically loaded code. Crypton is meant to exist in a
packaged mobile or desktop application.

3) End-to-End: Google has created a Chrome extension [8]
emulating a PGP system in the browser using OpenPGP [9].
Unlike Crypton, it does not seek to provide a framework for
developing applications, but to simplify the addition of end-to-
end encryption in existing applications. Like Mylar, it requires
a browser extension to use.

Its key distribution relies on a web of trust [10], whereas
Crypton’s relies on manual, out-of-band fingerprint verifica-
tion.

II. ARCHITECTURE

A. Backend

PostgreSQL was chosen for the main data store for its ACID
compliance, transaction handling, and replication options.

Redis was chosen as a session store for its speed. Due
to the nature of Crypton’s composable transactions, session-
authenticated requests may hit the server quickly or en masse.

Node.js was chosen for an HTTP server and transaction
processing logic. Its event-driven architecture was desirable,
as well as the reduced context switching in development and
possibility of isomorphic code that language parity with the
client brings.

Docker is used to homogenize backend deployment. This
leads to ease of use from a development perspective and the
hope of decreased server security mistakes that a unified and
deterministic process brings.

B. Ciphers

Before continuing, it is important to note that all future
mentions of encryption or decryption assume AES256 in Gal-
lois/Counter Mode(GCM) [11]. We utilize the ElGamal [12]
encryption scheme and ECDSA [13] for signature verification,
using elliptic curve p384 [14] for key generation. These are

what we used to implement the reference client, but they can
be switched out for competing algorithms if desired.

C. Frontend

Crypton clients may be implemented in any context where
their code may be packaged and verified. All communication
with the server is achieved RESTfully using JSON over
HTTPS.

D. Accounts

Each user of a Crypton application must have an Account.
1) Authentication: Authentication is achieved without stor-

ing a password equivalent (hash or otherwise) by use of
the Secure Remote Password Protocol (SRP) [15]. After
a successful SRP negotiation, the client uses the user’s
password and keypair salt to generate a keypair key with
PBKDF2 [16]. A keypair mac key is also generated with
the keypair mac salt.

The keypair key is used to decrypt the main keypair. The
private key from this keypair is used to decrypt all other keys
in the Keyring.

2) Keyring: Each account has a keyring.

TABLE I
CRYPTON KEYRING STORAGE FIELDS

Field Purpose

srp verifier SRP v (password verifier) [15]
srp salt SRP s (user’s salt) [15]
keypair salt salt used to generate keypair key
keypair mac salt salt used to generate keypair mac key
keypair main keypair encrypted by keypair key
keypair mac MAC used to verify keypair
pubkey plaintext public key for account
container name hmac key key used for HMAC of container names
hmac key key used for generalized HMAC operations
sign key pub plaintext public key for signature verification
sign key private mac salt salt used to generate sign key private mac
sign key private ciphertext of private signature key,
sign key private mac MAC used to verify sign key private

E. Transactions

All client operations which affect the state of the database
are performed with composable transactions. These are typ-
ically hidden from developers - clients abstract common
transactions such as account and container creation to provide
a transparent API - however they can be used manually to
create new atomic action sets.

1) Transaction Chunks: Transaction Chunks are the actions
which may be individually or collectively added to a transac-
tion. Data attached to a Chunk is referred to as its ”payload”. It
may require specific data or none at all. We will not define data
payloads in this paper as they are numerous and can largely
be inferred.



2) Transaction Lifecycle: Transactions must first be created
- this provides a unique identifier for all future actions regard-
ing that transaction. Transaction Chunks can be added in batch
or one at a time. Transactions must have one or more Chunks
to be considered valid.

When a client is done composing a transaction, it may
request the backend to commit it. This is typically a syn-
chronous operation from the client’s perspective, but the timing
of transaction processing is up to the backend’s discretion and
is variable depending on the volume of the queue.

TABLE II
CRYPTON TRANSACTION CHUNK TYPES

Name Purpose

add account create an account
set base keyring add or change keyring for account
add container create a new container
delete container delete an existing container
add container session key add session key for container
add container session key share add wrapped session key

for a given container and account
add container record add a new record for given container
add message add a user-to-user message
delete message delete a user-to-user message

3) Transaction Processing: As Chunks are added to a
transaction, they are added as rows in pre-processing tables
in the database. When a client requests that the transaction be
committed, it is marked with a commit request time and added
to a queue.

A separate dequeueing program (or likely a clustered de-
ployment of said program) will watch for and process incom-
ing transactions. All pre-processing rows are pulled from the
database which belong to the transaction in question. This
data is checked for logical consistency (a record may not
be added to a nonexistant container) and stored in temporary
tables. These tables act as locks in the case of a conflicting
transaction that is being concurrently processed. It is checked
for semantic consistency (e.g. two accounts may not have the
same username) and its changes are commited to the database
if there are no conflicts. If there are conflicts, the client is
informed that its commit has failed and will typically retry
the commit (or make changes to resolve the conflict).

F. Containers

Containers provide the main logical abstraction for data
storage in Crypton. On the client, they are meant to resemble
(or replicate) the interface of the implementation language’s
native object format (an Object in JavaScript or a Dictionary in
Python). They are meant to be used as a native data structure,
with a few exceptions.

The first exception is that Containers have names.
This name is only known to the client; to interact
with the container (through transactions), the client must

first HMAC the container name with their account’s
container name hmac key.

The second exception is that they may be saved. When they
are saved, a Container Record is created.

1) Container Records: Container Records are defined as
discrete changes between versions of a container.

When a container is saved on a client, the delta between its
last known version is calculated and encrypted. This is sent to
the server as a payload value in an add container record
transaction chunk.

When a container is loaded, all of its encrypted deltas are
sent to the client, decrypted, and the state of the object is
rebuilt using them.

2) Container Session Keys: Container Records are en-
crypted with a per-container key called the Container Session
Key. These are never stored with the server.

3) Container Session Key Shares: Container Session Key
Shares are public-key-wrapped versions of Container Ses-
sion Key. When a container is loaded, the server will send
the client a container session key share for its account,
which it must decrypt with its private key, providing a
container session key.

This allows a container to be shared with another account by
a user who already has access to that container. This is done
by encrypting the container session key with that user’s
public key and signing with their private signing key. Giving
oneself access to a container and sharing that container are
effectively the same operation but with different keys.

G. Messages

Messages are an additional data structure Crypton provides
for when Containers are not the best option - typically in a
situation where you have to send data to another user in a
one-off fashion and don’t require versioning or sharing.

Crypton Messages are implemented as traditional public key
messages, similar to PGP. Their body and headers are en-
crypted to the Peer’s public key and signed with the originated
user’s private signing key.

Messages are created and destroyed with add message and
delete message transaction chunks, respectively.

1) Headers: Along with a message’s body, metadata may
be included in a message’s headers. This allows Crypton to
preserve privacy for application-specific metadata in messages
and gives clients an efficient route to retreive this data without
decrypting a full message body.

H. Peers

In order to share a container or send a message to another
account, a user must access the public keys of the receiving
account. This set of keys is referred to in Crypton as a Peer.
These keys are obtained by querying the Crypton server by
username. Because there is an obvious attack vector of a server
impersonating the requested keys, Peer keys are required to be
verified before they are used.



1) Fingerprint: Initialized Peer classes in Crypton
clients generate a fingerprint of the construction
SHA256(EKp | delimiter | SKp), where EKp is the
public encryption key and SKp is the public signing key.
SHA256 is used to avoid preimage and collision attacks.

Peer verification is expected to be performed in an out-of-
band manner. The best approach is for an application developer
enable their application to email or SMS the fingerprint of user
Alice to user Bob. Once Bob has Alice’s fingerprint, he can
use it verify the keys sent by the Crypton server. If they don’t
match, the user can suspect the server is acting maliciously. If
they do match, Bob can trust() Alice’s peer object by storing
her fingerprint in his Trust State Container.

I. Trust State Container

The Trust State Container is a normal Crypton container
that is created during account generation. When the trust()
method on a peer object is called, their fingerprint is stored in
this container along with their username. This container may
be used as a ”contacts list”, but should be treated as readonly
on the application level.

These verification steps allow for a system that can detect
changed fingerprints from the server in order to warn users that
the peer they want to communicate with might be an impostor.

Fig. 1. Identity Card Example

J. Identity Cards

Crypton’s peer verification mechanism also includes an ef-
fort to create new metaphors in privacy-centered applications.
Instead of teaching users about public key cryptography, we
wanted to find a metaphor that everyday users will easily
understand.

Crypton clients are expected to implement a Card generation
class. This class will take an Account object as input and
output an image with username, application name, colorized
fingerprint, and a QR code. It is also expected to provide a

method taking a QR code-containing image as input to verify
to peer automatically.

Rather than send a textual fingerprint to another user,
Crypton applications utilizing multi-user features are expected
to generate and send a Card out of band for consistency and the
propagation of an understandable metaphor. These applications
are also expected to display a client-generated Card of the
other party for verification.

1) QR Code: QR codes were chosen for their ubiquity
and machine-readable properties. When Bob receives Alice’s
ID Card out of band, he can simply load it into a Crypton-
enabled application and let his device verify the parity of the
fingerprints. Data in the QR code is encoded with JSON and
contains the fields found in Table III.

TABLE III
IDENTITY CARD QR FIELDS

Name Definition

version version of this data structure
username username of peer
fingerprint fingerprint of user’s public keys
application name of application which generated this card
signature signature of fingerprint,

proving the user has access their private key

K. Colorized Fingerprint

For users who wish to verify the fingerprint manually, it
is presented on the bottom of the Card as a series of two-
octet sections (for readability). The sections are assigned a
hexadecimal color by taking their first octet for the red value,
second octet for the green value, and the first octet of the next
section for their blue value - this provides cascading errors
which further draw the user’s attention to discrepancies. Col-
orization is not to be relied upon as a verification mechanism,
only to make it easier to identify differences in the content of
the fingerprint.

III. THREAT MODEL

A. Assumptions

Crypton has initially been developed in JavaScript. How-
ever, there are no apparent difficulties in porting its concepts
to a another language. In its use of JavaScript, it could be
easily assumed that Crypton was meant to be used in a web
browser - this is incorrect. Browsers are beset by a problem of
unverifiable code delivery in that users cannot verify that the
script they received from the server is as intended. Therefore, it
is only recommended to use Crypton in packaged applications.
Tools such as Cordova [17] or node-webkit [18] are used for
packaging Crypton applications using the JavaScript client.
Clients implemented on disparate platforms are also expected
to be distributed in a packaged manner.



B. Strengths

Crypton at its core provides a cryptosystem meant to protect
users’ data, share that data with other users, and send messages
directly between users. This is all meant to happen with
the server having no knowledge about the content of these
messages or data containers. Furthermore, with the use of
HMACs as public container names, the server’s knowledge
of application metadata is hindered.

In the use of SRP for authentication, without storing a
password equivalent, data compromise in a server breach is
limited if not negligible. Without a user’s password, the only
effective attack on that user’s data would be to bruteforce AES
keys.

C. Threats

There are several problems which Crypton is not designed
to mitigate. In the event of a server compromise, the following
threats to a Crypton system are applicable:

1) Traffic storage: IP addresses or hostnames belonging to
those accessing the server may be stored by a malicious server
operator or attacker, reducing the pseudoanonymity afforded to
users of a Crypton system (email addresses are not required
for account generation). This can be mitigated by accessing
the server with Tor [19] or a similar system.

2) Peer graph analysis: Usernames are stored in plaintext
by the server. Database records can be analyzed to connect
sharing and message networks between usernames. If this is
used in concert with traffic storage, the identities of a Crypton
application’s users may be compromised.

3) Container access frequency analysis: Certain containers,
such as the Trust State Container, are created, accessed, or
updated in a deterministic manner. A sophisticated attack
may disclose the identity of certain containers to narrow a
bruteforce decryption attack. This can be limited by choosing
a strong password.

IV. FUTURE WORK

A. Container Compaction

As containers are used over time, many records may be
added to them. In order to load a container, all of these records
must be decrypted and parsed by the client. As a result, loading
a container will grow slower over the course of its lifetime if
it is constantly updated.

Container compaction would add a new transaction chunk
type which, when provided with the ultimate desired state
of the container (and barring transactional conflicts), would
remove all past records for that container and leave only the
latest state. This would decrease load times for heavily used
containers significantly.

”Autocompaction” is also an interesting avenue to pursue,
where compaction would occur automatically upon saving a
container. This would be useful for applications which don’t
care to save historical versions of their data structures.

B. Container caching

Another improvement to container load times would be to
cache encrypted container records locally and sync them with
what the server provides. This will require the addition of
event emission and perhaps Operational Transformations to
the Container class in order to work safely.

C. Multiple Client Implementations

The JavaScript client was developed as a reference im-
plementation. The cryptosystem is sufficiently abstracted so
that it may be implemented on most platforms. This will be
most easily acheived by implementing a core client in C.
Wrappers may be written in Objective-C, Java, etcetera to
provide syntactic sugar and platform-idiomatic APIs.

D. Hosted Backend

A service is being developed to host back-end Crypton
servers. This means there will only be front-end development
work for someone wishing to build a Crypton application.

V. CONCLUSION

Today’s application developers have the responsibility to
protect their users’ data. We have seen in the recent past where
SSL did not protect users [20] making it an imperfect solution
for online data security. End-to-end encryption technology,
frameworks and services are the best hope for a truly private
application development environment. Crypton’s approach is
an attempt at filling this gap in the marketplace. While Crypton
cannot solve all data security problems we have today, it is a
good start in the direction of allowing developers without a
concentration in cryptography a framework that keeps appli-
cation data private.

It is too much to ask all developers interested in building
applications that are centered on privacy to become proficient
in cryptographic primitives and their use in secure cryptosys-
tems. This being the case, Crypton is a small step toward a
more private application development future.

The chief concern of Crypton is the user experience of
developers from the API level all the way up to the user inter-
face endusers utilize for key exchange. With the cryptography
hidden from the developer and new metaphors like ”ID cards”
to replace ”key exchange”, the authors think the way is paved
toward every developer having the ability to create simple,
secure, and private applications.

Whether you utilize Crypton or not, the authors implore
you to protect yourself and your users from adversaries by
encrypting all data, not only on the wire but at rest.
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